Mutations in ARMC9, which Encodes a Basal Body Protein, Cause Joubert Syndrome in Humans and Ciliopathy Phenotypes in Zebrafish: Influence Statistics

Expert Impact

Concepts for which they have has direct influence: Joubert syndrome , Basal body , Ciliopathy phenotypes , Retinal dystrophy , Primary cilium , Ciliary dysfunction , Liver fibrosis .

Key People For Joubert Syndrome

Top KOLs in the world
#1
EUGEN J Boltshauser
joubert syndrome neurofibromatosis type magnetic resonance
#2
Enza‐Maria Valente
joubert syndrome parkinson disease pink1 mutations
#3
Joseph Gerard Gleeson
joubert syndrome intellectual disability neuronal migration
#4
Phillip F Chance
joubert syndrome hereditary neuralgic amyotrophy human pair
#5
Ian A Glass
joubert syndrome kidney disease shox haploinsufficiency
#6
Melissa A Parisi
joubert syndrome kidney disease nutritional interventions

Mutations in ARMC9, which Encodes a Basal Body Protein, Cause Joubert Syndrome in Humans and Ciliopathy Phenotypes in Zebrafish

Abstract

. Joubert syndrome (JS) is a recessive neurodevelopmental disorder characterized by hypotonia, ataxia, abnormal eye movements, and variable cognitive impairment. It is defined by a distinctive brain malformation known as the "molar tooth sign" on axial MRI. Subsets of affected individuals have malformations such as coloboma, polydactyly, and encephalocele, as well as progressive retinal dystrophy, fibrocystic kidney disease, and liver fibrosis. More than 35 genes have been associated with JS, but in a subset of families the genetic cause remains unknown. All of the gene products localize in and around the primary cilium, making JS a canonical ciliopathy. Ciliopathies are unified by their overlapping clinical features and underlying mechanisms involving ciliary dysfunction. In this work, we identify biallelic rare, predicted-deleterious ARMC9 variants (stop-gain, missense, splice-site, and single-exon deletion) in 11 individuals with JS from 8 families, accounting for approximately 1% of the disorder. The associated phenotypes range from isolated neurological involvement to JS with retinal dystrophy, additional brain abnormalities (e.g., heterotopia, Dandy-Walker malformation), pituitary insufficiency, and/or synpolydactyly. We show that ARMC9 localizes to the basal body of the cilium and is upregulated during ciliogenesis. Typical ciliopathy phenotypes (curved body shape, retinal dystrophy, coloboma, and decreased cilia) in a CRISPR/Cas9-engineered zebrafish mutant model provide additional support for ARMC9 as a ciliopathy-associated gene. Identifying ARMC9 mutations as a cause of JS takes us one step closer to a full genetic understanding of this important disorder and enables future functional work to define the central biological mechanisms underlying JS and other ciliopathies.